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Fuzzy o Algebras of Physics’
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Following the idea of Zadeh, the concept of a statistical (or fuzzy) o algebra is
introduced. For two extreme cases of classical and quantum statistical o algebras
the representation thecrems are proved. The basic feature distinguishing these
two cases is the possibility of producing nontrivial superpositions of pure
quantum states, which is absent in the classical case.

1. INTRODUCTION

.For ordinary Boolean algebras and o algebras there exist well-known
representation theorems of Stone and of Loomis-Sikorski, respectively (see,
e.g., Varadarajan, 1968), which now constitute a part of the classical mathe-
matical background.

The main purpose of the present paper is to prove the representation
theorem for the class of statistical o algebras. To achieve this, the theory
of orthomodular o orthoposets is involved here, and using finally the
so-called “fundamental theorem of projective geometry” (cf., Varadarajan,
1968 ; Maeda, 1970), the representation theorem is established, stating that
any statistical o algebra satisfying the superposition principle (and some
additional dimension requirement) can be identified with the o orthoposet
consisting of .L-closed subspaces of some inner product vector space over
an involutive division ring. On the other hand, the classical statistical o
algebras are shown to be the ordinary o algebras of subsets of a given set,
as might be expected.

The theory we have developed here is interpreted in terms of familiar
concepts of classical and quantum mechanics. The result of the comparison
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of these two theories is somewhat surprising, for the only difference between
the classical and quantum theories, when they are compared using the
language of the statistical o-algebra approach, is the existence of pairs of
pure states in quantum mechanics which can produce a nonrtivial super-
position.

2. AXIOMS FOR A STATISTICAL o ALGEBRA

The concept of a statistical (or fuzzy) o algebra is a generalization of
that of an ordinary o algebra of sets, replacing the customary relation “an
element x belongs to a subset A” by defining only the probability that x
belongs to A (cf. Zadeh, 1965).

To be precise, we define a statistical o algebra as a triple (P, Q, (+,-))
consisting of two nonempty sets P and Q, whose members will be called
points and objects, respectively, and a function, (-,-) from P X Q into the
unit real interval [0, 1][the number ( p, a), where p € P, a € Q, will be called,
after Zadeh, the degree or grade of the membership of p in a, and interpreted
as the probability that p “belongs to” a], satisfying the Axioms 1-7 below.

Axiom 1. If (p,a)=(p, b) for all p in P, then a=0>.

Axiom 2. There exists an element a, in Q such that (p, a,)=1 for all
peP.

Axiom 3. For every a € Q there exists be Q such that
(p,a)+(p,b)=1
for all pe P.

Note that by Axiom ! the elements a, in Axiom 2 and b above are
unique, and will subsequently be denoted by 1 and a’, respectively. The
element 1’ will be denoted by 0. Note also that using the function (-,-) one
can define the relations of the partial ordering and orthogonality in Q
following the well-known prescription of Mackey (1963):

a=b iff (p,a)=(p,b) forall pin P;
albiff (p,a)+(p, b)=1 for every p € P, or, equivalently, iff a< b’ (or
b=a')

Axiom 4. For any sequence {a;} of pairwise orthogonal elements of Q
(i.e., satisfying a;la, when i# j) there is an element a € Q such that

(p,a)=% (p, a)

forall pe P.
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By Axiom 1, the element a above is easily seen to be uniquely deter-
mined by the sequence {a;}, and it will in the sequel be denoted by }; a.
Note that Axiom 4 simply expresses the fact that Q is o complete (or, to
be more precise, g-orthocomplete; cf. Mackey, 1963).

Before going further we make a trivial remark that if for some a, be Q
there exists a point p in P with (p, a)=1 and (p, b) >0, then clearly axb.
The content of our next axiom is that the above implication can be reversed.

Axiom 5. if a b, where a, b e Q, then there is a point p in P such that
(p,a)=1and (p, b)>0.

The significance of Axion 5 will be clearer if one observes that this
axiom can be divided into two parts, whose meaning seems to be simpler
than that of Axiom 5, namely:

Axiom 5. For every nonzero object a€ Q there exists a point pe P
such that (p, a)=1.

Axiom 5". If for each point p € P satisfying (p, a) =1 we always have
(p,b)=1, where a,be Q, then a=<b.

To prove the equivalence between Axiom 5 and the pair of Axioms 5,
5", note first that the implication from Axiom 5 to Axiom 5’ is trivial, for
it is sufficient to insert b =1 into Axiom 5. (Note that a X1, 7since a was
assumed to be nonzero.) To show that Axiom 5" also follows as a con-
sequence of Axiom 5, assume the contrary, i.e., that (p, a)=1 implies
(p,b)=1 for every p in P, and still a £b. Then akb’, so that by Axiom 5
there exists a point pe P with (p, a) =1 and (p, b’) > 0, the latter implying
(p, b) <1, which contradicts our assumption. To prove the converse, i.e.,
the implication from the pair of Axioms 5', 5" to Axiom 5,let a€ Q, a #0,
and suppose that a£b for some b in Q. Then a b/, so that there must
exist by Axion 5", a point p € P such that (p, a) =1 and (p, b’) <1, the latter
being equivalent to ( p, b) > 0. [Note that the existence of at least one point
p with (p, a) =1 is guaranteed by axiom 5'.] The equivalence is therefore
established.

In the sequel, we shall write p € @ whenever (p, a) =1 and say that “p
belongs to a” or “a contains p.”” Otherwise, i.e., when (p, a) <1, we write
p#a. Note that we in general do not have the “classical implication”
pE€a=>peca’.

Axiom 6. For each p € P there is an object a € Q which contains only
the point p. More formally,

Voepdaco, PEa and Vicpg=p, 4£Q
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Axiom 7. If (p,a)>0, where pe P and a e Q, then there exists one
and only one point g € a such that (p, a) =(p: q), where (p: q), the so-called
transition probability from p to g, is defined by

(p:q)=inf{(p,a): ac Q,(g,a)=1}.

The unique point g, whose existence is guaranteed by Axiom 7, will
in the sequel be denoted by p,. The physical interpretation of p, is as follows
{cf., e.g., Guz, 1981b): p, is the final pure state of a physical system to
which the initial pure state p goes, after the “measurement” of the degree
of membership (p, a) of p in a is performed.

To give some examples of mathematical structures satisfying Axioms
1-7, let us first consider any o algebra o of subsets of a set X having the
property that all one-point subsets of X belong to s{. Identifying P =X,
Q = ¢, and putting by definition

)1 if pea
(’”“)‘{0 if ¢a

we arrive at a trivial example of a statistical o algebra (P, Q,(-,")).

A more interesting example can be obtained when one identifies Q
with the ortholattice L(H) of the closed subspaces of a complex Hilbert
space H, P with the subset of L(H) consisting of the one-dimensional
subspaces of H, and puts by definition

(p, a) =tr(P,P,)

where P,, P, denote the orthoprojectors onto p and a, respectively, and tr
stands for the trace. In this case, the Axioms 1-7 can be interpreted in terms
of pure states and propositions (yes-no measurements). The details of this
approach can be found, for instance, in Guz (1981a, b).

3. THE EMBEDDING THEOREM

Now, we shall show the most important consequences of Axioms 1-6,
culminating in proving an embedding theorem for Q. The set of objects.
The consequences of Axiom 7 will be examined separately at the end of
this section.

Theorem 1. The set Q of objects, endowed with the partial ordering
= and the correspondence a— a’, is a o orthoposet, i.e., an orthomodular
orthocomplemented o-orthocomplete partially ordered set with the least
and the greatest elements, 0 and 1, respectively, in it.

To prove the theorem above we shall adopt the techniques used in the
so-called quantum logic approach to axiomatic quantum mechanics {(cf.,eg.,
Mackey, 1963). The proof will be preceded by two lemmas.
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Lemma I. If a;€ Q,i=1,2,...,are pairwise orthogonal, then }; a; is
the least upper bound (l.u.b.) for the sequence {a;}, denoted subsequently
by V; a.

Proof (after Mackey, 1963). By definition, Y ; a;=a; for every i=
1,2,.... Suppose now that b=a; for each i. Note that the latter can
equivalently be expressed as b'la; for all i, so that the Axiom 4, when
applied to the sequence {b', a,, a,,...} (consisting, clearly, of pairwise
orthogonal elements), leads to the existence of the element b’'+a,+a,+ - - -
in Q. In other words, for all pe P we have

l=(p, b'+ata,+---)
=(p’ b’)+(p, al)+(P, a2)+' te

=(p, b'>+(p, z a,-)
J
and hence
b'l} a;
J
or equivalently
Ya=b'=b
j

The last inequality shows that }; g; is indeed the Lu.b. for the orthogonal
sequence {a;}, as claimed. W

Lemma 2. Q is orthomodular, that is, it has the following property:
aSb:}HeeQ,cLa: b=avec

Moreover, ¢ is uniquely determined by a and B: ¢ = b A a’, the latter denoting
the g.1.b. (greatest lower bound) for b and a’.

Proof. Since a < b, or equivalently a L b’, we see that by Axiom 4 there
exists a+b'in Q.
Letting c=(a+b')’, we immediately check out that for an aribtrary
peP,
(p,c)=1-(p,a+b)=1-(p,a)—(p,b)=(p, b)~(p, a)

so that

(p,b)=(p,a)+(p,c)=(p,atc) *

where latter equality is a consequence of the fact that alc (see Axiom 4).
Indeed, cLa+b'=a, and hence also cLla. The equality (*), valid for all
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p< P leads by Axiom | to b=a+c=av ¢, where the last equality follows
as a consequence of Lemma 1.
Finally, by de Morgan’s laws

=(a+bY=(avb'Y=a' rb

as claimed. The proof of the lemma is thus complete. W

We are now in a position to prove our theorem. Clearly, for an arbitrary
object ae Q we have a"=a, and a=b implies b'=a’ (a, be Q), which
means that the correspondence a+ a’ is an involution. We shall show that
this involution is in fact an orthocomplementation, i.e., that b<aand b<a’
leads necessarily to b =0. Indeed, if b<a and b= a’ for some a, b€ Q, then

b=glbfa,at=ana'=(a'va)=(a'+a)=1=0

so that b =0, as required.

Note that the existence of a A a’=g.l.b.{a, a’} is a direct consequence
of de Morgan’s law and the existence of the lLub.{a’,a}=a'va=a'+aq,
the latter being guaranteed by Axiom 4.

The proof of the theorem is therefore complete. Before going further,
we need some definition.

An object a€ Q is called a support (or carrier) of a point pe P (cf.
Zierler, 1961; Pool, 1968), if (i) pea,i.e., (p,a)=1; (ii) pe b, where b€ Q,
implies b=gq, i.e., a is the smallest object in Q containing p.

Note that by (ii) the support of p, if it exists, is uniquely determined
by the point p. We shall denote it by s,.

Lemma 3. Every point p € P has the support, and
(g,5,)<1

for all points g # p. Moreover, the support s, of p is an atom in Q, i.e.,
a<s, acQ, implies either a =5 or a =0, and the correspondence p— s,
p€ P, is a bijection of the set P of points onto the set A(Q) of atmos in Q.

Proof. Let pe P. By Axiom 6, there exists an a € Q such that (p,a)=1
and (g, a) 1 for all points g different from p. We shall show that a is the
support of p.

Let be Q, b# a. (Note that such an element b always exists, since
a#0, so one can take, for instance, b=0). Since a4b’ and a # 0, there
exists by Axiom 5 a point re P such that

(r,a)=1 and (r,b)>0

the latter being equivalent to (r, b) < 1. However, by virtue of Axiom 6, the
point r must be identical with p, r=p, and we therefore conclude that
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(p, b)<1. Thus, we have shown that

VpePaaeQ((p, Ll) = 1 and VbeQ, B?_a(pa b)< 1)

which means that the object a is the support of p, a =s,.

At the same time we have proved (see above) that (g, a) <1 for every
point g # p.

Now, we shall show that s, is an atom in Q.

Suppose that ¢ =<s,, ¢ # 0. By Axiom 5, there exists a point g € P with
(g, ¢)=1, and hence also (g, s,) =1, so that g=p according to what we
have already proved. But (g, ¢) =1 implies ¢ =5, =5, and therefore c =s,,
as claimed.

To prove that p— s, is one-one, assume that s, = s, for some p, g€ P.
Then

(g,5,)=(g,5,)=1

and hence g = p.
Finally, if e is an atom in @, then by Axiom 5’ we have

(p,e)=1

for some p € P, and hence e = s,, so that e = 5,, as e is already an atom. This
proves that p—s, is “onto,” and concludes the proof of the lemma. W

Lemma 4. Q is atomic, that is for every nonzero element a € Q there
exists an atom e € Q such that e=< a. Moreover, Q is atomistic, i.e., every
nonzero element ae Q is the Lu.b. of the atoms contained in it. More
precisely,

a=V{s: peP, (pa)=1}

Proof. Let a be a nonzero element of Q. By Axiom 5', there exists a
point pe P with (p, a)=1. Hence a = s,, where s, is an atom by Lemma 3,
which concludes the proof of the first half of the lemma.

Obviously, a = s, for every p e P with (p, a) = 1. Now, assume that for
some b e Q we also have b= s, for all p € P satisfying (p, a) =1, and prove
that b= a. Since b=s,, we have (p,b)=(p,s,) =1, so that (p,b)=1. The
latter equality, valid for all p € P with (p, a) =1, shows that we must have
a = b indeed, after we take into account our Axiom 5".

To summarize the results we have obtained so far as the consequences
of Axioms 1-6, we state the following theorem.

Theorem 2. Let (P, Q,(-,:)) be a statistical o algebra. Then Q is an
atomistic o orthoposet, and there is a one-to-one mapping p—> s, of the set
P of points onto the set A(Q) of atoms in Q such that s, =< a if and only
if (p,a)=1.
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Before going further, we have to introduce some definitions. We shall
say that two points p, g € P are orthogonal (compare Gudder, 1970), and
write p Lg, if for some object a€ Q we have (p,a)=1 and (g, a) =0. The
above-defined orthogonality relation L is clearly symmetric. Note, by the
way, that plgq if and only if 5,15, Indeed, pLq implies s,=<a and s, =a’
for some ac Q, and hence 5,15, Conversely, 5,15, leads to

1=(p,s,)=(p, s;)

so that (p, s;)=1=(q, s,), which shows that p g, as claimed.

The set P of all points endowed with the orthogonality relation defined
above will be called the generalized phase space. Thus, the generalized phase
space (P, L) provides an example of what is called by mathematicians an
orthogonality space (cf., e.g., Randall et al., 1972; Gerelle et al., 1974, and
references quoted therein).

Let now S be a subset of P. Define S to be the set of all points pe P
such that pLS (read: pLlg for all ge§), and write S~ instead of S**.
Clearly, s< S7, and when S= S, we call the set S closed (or, to be more
precise, L closed). 1t is not difficult to check out that under set inclusion
the family of all closed subsets of P, denoted subsequently by C(P, 1) and
called the phase geometry associated with (P, Q, (-,-)) (Guz, 1975) becomes
a complete orthocomplemented lattice, whose lattice operations (joins and
meets, respectively) are given by

Vij=(Uij)_, /\jS,-=ﬂij

where {S;} denotes an arbitrary family of closed subsets of P, and the
orthocomplementation is given by the correspondence S~ S*, Se C(P, 1).
For the empty set & we put, by definition, &* = P, so that both ¢ and P
belong to C(P, 1).

Lemma 5. Let S be a nonempty subset of P. Then
S ={peP:{p,a)=1 for all ac Q such that (g, a) =1 for every g€ S}

Proof. Let pe P be such that (p,a)=1 for every ae Q satisfying
(g,a)=1 for all ge S. We shall show that pe S™, i.e., that pLS*. To do
this, two cases should be considered.

(a) S*=(. In this case, S~ =" = P, so nothing has to be proved.

(b) S*#@. Let re S. Then s, Ls, for every g€ S, so that (g, s;) =1 for
all g€ S. By the hypothesis, (p, s;) =1, so that 5, <s; or s,1s,, thatis, pir.
We thus have shown that p_Lr for every re S*, which means that p 1 S* or
pe(SH)*t=5".

To prove the opposite inclusion, assume that pe S7, i.e., pLS*. We
shall show that (p, a) =1 for every a e Q satisfying (g, a)=1 for all ge S.
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Again, two cases will be considered. One can assume, without any loss of
generality, that a # 1. Then, by Lemma 5,

a'=\{s,: reP,(r,a)=1}

Since for an arbitrary g€ S, s, <a’'<s), or, equivalently, re S*, one
must in particular have, by the assumption p.Lr, so that s,Ls,. Hence also

LV s, reP,(r,a)=1}=a’

and therefore (p, a)=(p, s,) =1, so that (p, a) =1, as claimed. The proof
of the lemma is therefore complete. W

The physical interpretation of the members of the set difference S7\S
is, according to Varadarajan (1968), that S\ S represent the set of superposi-
tions of the pure states from S, as these elements are precisely the “pure
states” which have all the properties possessed by all the elements of S
simultaneously (for details, see Varadarajan, 1968).

We shall now prove the following “embedding theorem.”

Theorem 3. For every a€ Q, the set a' ={pe P: (p, a) =1} belongs to
C(P, 1), and the correspondence a~>a' defines an orthoinjection of the
o-orthoposet Q into C(P, 1).

Proof. Let us first observe that
al — (aO)_L (**)

where
a®={qeP:(q,a)=0}
hence
(al)—: (aO)_LJ_J_: (aO)J_ — al
which shows that a'e C(P, 1).

To prove (**), one can assume with no loss of generality that a # 0,
since a =0 implies a®= P, so that (a®)* = P* = =a', as required.

Let pea'. Then clearly, pLq for all g€ a® that is, pe(a®)*, which
proves that a'<(a®)*. To prove the opposite inclusion, assume that pe
(a®)*, sothat s, L s, forall g€ a’. Hence s, 1 a’, since by Lemma 4, a’ = \/{s,:

14 q P y q
g€ P, g€ a°}. Therefore,

(p,a)=(p,s;)=1

so that (p, a) =1, which shows that pe a', and the opposite inclusion is
also established.

To prove the second half of the theorem, observe that a =< b, where
a, be Q, implies clearly a' < b', and that the opposite implication is guaran-



490 Guz

teed by Axiom 5”. Obviously, 0="¢J, and 1'= P, so there remains to be
shown that the correspondence a~> a' preserves the orthocomplementation,
ie.,

arl — (al)
But a'=a’°, and one therefore finds by using (**) that
(al) — (arO) — arl

as required. The proof of the theorem is thus complete. W

We shall now come back to Axiom 7 and its consequences. The physical
significance of this axiom has been clarified in a series of papers (Bugajska
and Bugajski, 1973a, b; Guz, 1980, 1981a, b), where several equivalent forms
of this postulate were found and analysed in detail. In particular, the
equivalence between Axiom 7 and the so-called covering law in Q has been
established. (We recall that the covering law holds in Q, or that Q possesses
the covering property, if for each a € Q and each atom e € A(Q) there exists
avein Q, and av e covers a, when e a, i.e., ave=b=q implies either
b=a or b=ave). The latter is in turn equivalent to the well-known
Jauch-Piron condition in Q (see Jauch and Piron, 1969), Stating that for
every pair a, e of elements of Q, where e is an atom, the “difference”
ave—a, defined as (ave)aa', is either an atom (when e % a) or zero
(when e<a).

So, we finally arrive at the following result.

Theorem 4. If (P, Q, (+,*)) is a statistical o algebra, then Q, the set of
objects, endowed with the partial ordering = and the orthocomplementa-
tion’, is an atomistic o orthoposet satisfying the covering law.

Moreover, repeating the arguments used previously in the context of
the quantum logic approach (Guz, 1978) one can establish the following fact.

Theorem 5. For any statistical o algebra (P, Q, (-,-)), its associated phase
geometry C(p, 1) is an atomistic, orthomodular, orthocomplemented com-
plete lattice with the covering law holding in it.

4. SUPERPOSITION PRINCIPLE

A pair {p, q} consisting of two distinct points from P is said to be
classical if {p, g} ={p, q}, that is, if there is no superposition of p and ¢.
Otherwise, it is called nonclassical

Now, we have two extreme possibilities for statistical o algebras: the
quantum case, distinguished by the validity of the superposition principle
(cf. Guz, 1974, 1975; Pulmannova, 1976) which says that any pair {p, ¢} is
nonclassical, i.e., there exists a third point {pure state) in P, different from
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both p and g, which is a superposition of p and q; and the classical case,
where there are no nonclassical pairs at all. The corresponding statistical
o algebras will be called quantum and classical, respectively.

It is not difficult to show that in the classical case the transition
probability function (:) is trivial, that is,

( .)_{1 if p=gq
P71, if p#q

Indeed, suppose that (p, q) is a classical pair, i.e., {p, ¢} ={p, 9L, p#q.
Then, passing on to the supports s, 5, of, respectively, p and g, we find by
using the orthomodularity of Q

SpV 8, =8,V s5—8,)*s,

where s, v 5, — 5, is again an atom by the Jauch-Picron condition. Thus, by
Lemma 3, s,vs,—s,=s, for some re P. Obviously re{p, g} . Indeed,
assuming (p,a)=(q,a)=1 for some ac Q, one immediately finds that
5,V 5, = a, and therefore also s, =< a, which means that (r, @) = 1, the latter
showing that re{p, q}~, as claimed. But, by the assumption, r must equal
either p or q. Since s,Ls,, we find r=p and, clearly, p Lq. Hence, (p:q) =
(p,s,)=(p,s,)=0, so that (p:p)=0. Thus, in the classical case, we have
(p:q)=0 for all pairs (p, q) with p# g (obviously, (p:p)=1 for every
p € P), which proves our statement.

Moreover, in the classical case one has p, € a' if and only if (p, a) =0,
since p # a'impliesnow p La',and hence s, L v {s,: g € a'}, the latter equality
being valid by Lemma 4; hence (p, a)<(p, s,) =0, so that (p, a) =0. Thus,
in the classical case the function (-,-) is of the form

(5. a) {1 if pea’
a =
P, 0 ifpga"

so, we have now arrived at the trivial “degree of membership” function
discussed previously in Section 2.

We thus have shown that for any classical statistical o algebra (P, Q,
(-,*)), in which all two-point subsets {p, g} < P are classical pairs, the set
Q of objects can be identified (by Theorem 3) with a o algebra of subsets
of P, and the function (-,) is degenerated in the sense that (p, - ) is the §
measure on Q concentrated at the point p.

In the quantum case, the validity of the superposition principle leads
to the irreducibility of the phase geometry C(P,L) (Guz, 1978), which
together with Theorem 5 enables us to apply in this case the so-called
“fundamental theorem of projective geometry” (cf., e.g., Varadarajan, 1968;
Maeda, 1970), provided we add to Axioms 1-7 the requirement that the
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projective dimension of C(P, L) is greater than 3 (which simply means that
there are at least four orthogonal points in P). Then, by the above-mentioned
theorem, there exists an inner product vector space (V,{-,:)) over an
involutive division ring D such that C(P, 1) is orthoisomorphic to the
lattice of L -closed subspaces of the vector space V. (We recall that a subspace
M of V is said to be L-closed if M =M™*", where M*={xe V:{(x, y)=0}
for all y e M). Clearly, the representation theorem above applies also to Q,
as the latter was identified by Theorem 3 as a sub-o-orthoposet of C(P, 1).

Summarizing the results obtained so far, we arrive at the following
representation theorem.

Theorem 6. For any classical statistical o algebra (P, Q, (-, -)), the set
Q of objects can be identified with some o algebra of subsets of the set P,
and the function (-, -) becomes then trivial, i.e., for every p, (p, -) is the &
measure concentrated at p. If (P, Q, (-, -)) is a quantum statistical o algebra
such that there exist at least four orthogonal points in P, then there is as
inner product vector space (V, (-,+)) over an involutive division ring D
such that Q can be identified with a o orthoposet consisting of L-closed
subspaces of the vector space V.
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