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Following the idea of Zadeh, the concept of a statistical (or fuzzy) tr algebra is 
introduced. For two extreme cases of classical and quantum statistical ~r algebras 
the representation theorems are proved. The basic feature distinguishing these 
two cases is the possibility of producing nontrivial superpositions of pure 
quantum states, which is absent in the classical case. 

1. I N T R O D U C T I O N  

�9 Fo r  o rd ina ry  Boo lean  a lgebras  and  o- a lgebras  there  exist  we l l -known  
rep resen ta t ion  theorems  o f  Stone and  o f  L o o m i s - S i k o r s k i ,  respect ive ly  (see, 
e.g., Va rada ra j an ,  1968), which  now const i tu te  a par t  o f  the c lass ical  mathe-  
mat ica l  b a c k g r o u n d .  

The  ma in  p u r p o s e  o f  the  p resen t  p a p e r  is to p rove  the r ep resen ta t ion  
theo rem for the  class o f  s tat is t ical  cr a lgebras .  To achieve this,  the theory  
o f  o r t h o m o d u l a r  o- o r thopose t s  is involved  here,  and  using f inal ly the 
so-ca l led  " f u n d a m e n t a l  t heo rem of  pro jec t ive  geome t ry"  (of., Va rada ra j an ,  
1968; M a e d a ,  1970), the  r ep resen ta t ion  theo rem is es tabl i shed ,  s ta t ing that  
any  s tat is t ical  o- a lgebra  sat isfying the supe rpos i t i on  p r inc ip le  (and  some 
add i t i ona l  d imens ion  requ i rement )  can be ident i f ied  with the  o- o r thopose t  
consis t ing  o f  _l_-closed subspaces  o f  some inner  p r o d u c t  vec tor  space  over  
an involu t ive  d ivis ion ring. On the o ther  hand ,  the  c lass ical  s tat is t ical  cr 
a lgebras  a re  shown to be  the  o rd ina ry  o- a lgebras  o f  subsets  of  a given set, 
as might  be expec ted .  

The theory  we have d e v e l o p e d  here is in t e rp re ted  in terms o f  fami l ia r  
concepts  o f  c lass ical  and  q u a n t u m  mechanics .  The  resul t  o f  the  c ompa r i son  
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of these two theories is somewhat surprising, for the only difference between 
the classical and quantum theories, when they are compared using the 
language of the statistical o--algebra approach, is the existence of pairs of 
pure states in quantum mechanics which can produce a nonrtivial super- 
position. 

2. A X I O M S  F O R  A STATISTICAL ~ A L G E B R A  

The concept of a statistical (or fuzzy) cr algebra is a generalization of 
that of an ordinary o- algebra of sets, replacing the customary relation "an 
element x belongs to a subset A" by defining only the probability that x 
belongs to A (cf. Zadeh, 1965). 

To be precise, we define a statistical ~r algebra as a triple (P, Q, ( -,- )) 
consisting of  two nonempty sets P and Q, whose members will be called 
points and objects, respectively, and a function, ( . , . )  from P x Q into the 
unit real interval [0, 1] [the number (p, a), where p e P, a e Q, will be called, 
after Zadeh, the degree or grade of the membership of p in a, and interpreted 
as the probability that p "belongs to" a], satisfying the Axioms 1-7 below. 

Axiom I. If (p, a) = (p, b) for all p in P, then a = b. 

Axiom 2. There exists an element al in Q such that (p, al) = 1 for all 
p e P .  

Axiom 3. For every a e Q there exists b e Q such that 

( p , a ) + ( p , b ) = l  

for all p e P. 

Note that by Axiom 1 the elements a~ in Axiom 2 and b above are 
unique, and will subsequently be denoted by 1 and a', respectively. The 
element 1' will be denoted by 0. Note also that using the function ( . , .  ) one 
can define the relations of the partial ordering and orthogonality in Q 
following the well-known prescription of Mackey (1963): 

a -< b if[ (p, a) -< (p, b) for all p in P ;  
a.l_b iff (p, a) + (p, b) -< 1 for every p e P, or, equivalently, if[ a - b' (or 

b<_a'.) 

Axiom 4. For any sequence {ai} of pairwise orthogonal elements of Q 
(i.e., satisfying ai• when i r  there is an element a e Q such that 

(p, a) = ~ (p, a,) 
i 

for all p e P. 
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By Axiom 1, the element a above is easily seen to be uniquely deter- 
mined by the sequence {ai}, and it will in the sequel be denoted by ~i  ai. 
Note that Axiom 4 simply expresses the fact that Q is o" complete (or, to 
be more precise, o--orthocomplete; cf. Mackey, 1963). 

Before going further we make a trivial remark that if for some a, b ~ Q 
there exists a point p in P with (p, a) = 1 and (p, b) > 0, then clearly a,Z'b. 
The content of  our next axiom is that the above implication can be reversed. 

Axiom 5. if a,Ub, where a, b ~ Q, then there is a point p in P such that 
( p , a ) =  1 and (p, b ) > 0 .  

The significance of Axion 5 will be clearer if one observes that this 
axiom can be divided into two parts, whose meaning seems to be simpler 
than that of  Axiom 5, namely: 

Axiom 5: For every nonzero object a ~ Q there exists a point p ~ P 
such that (p, a) = 1. 

Axiom 5". I f  for each point p c P satisfying (p, a) = 1 we always have 
(p, b) = 1, where a, b c Q, then a -< b. 

To prove the equivalence between Axiom 5 and the pair of  Axioms 5', 
5", note first that the implication from Axiom 5 to Axiom 5' is trivial, for 
it is sufficient to insert b = 1 into Axiom 5. (Note that a~ ' l ,  7since a was 
assumed to be nonzero.) To show that Axiom 5" also follows as a con- 
sequence of  Axiom 5, assume the contrary, i.e., that (p, a ) =  1 implies 
(p, b) = 1 for every p in P, and still a ~'b. Then a,Ub', so that by Axiom 5 
there exists a point p E P with (p, a) = 1 and (p, b ' ) >  0, the latter implying 
(p, b ) <  1, which contradicts our assumption. To prove the converse, i.e., 
the implication from the pair of  Axioms 5', 5" to Axiom 5, let a c Q, a ~ 0, 
and suppose that aZb  for some b in Q. Then a ~ b ' ,  so that there must 
exist by Axion 5", a point p ~ P such that (p, a) = 1 and (p, b') < 1, the latter 
being equivalent to (p, b) > 0. [Note that the existence of at least one point 
p with (p, a) = 1 is guaranteed by axiom 5'.] The equivalence is therefore 
established. 

In the sequel, we shall write p c a whenever (p, a) = 1 and say that "p  
belongs to a "  or "a  contains p." Otherwise, i.e., when (p, a) < 1, we write 
p ~  a. Note that we in general do not have the "classical implication" 
p ~ a ~ p ~ a ' .  

Axiom 6. For each p ~ P there is an object a ~ Q which contains only 
the point p. More formally, 

~pcP~aEQ, p C a and Vqcp, q~p, qZ a 
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Axiom 7. If (p, a) > 0, where p ~ P and a ~ Q, then there exists one 
and only one point q c a such that (p, a) = (p : q), where (p : q), the so-called 
transition probability from p to q, is defined by 

(p : q) = inf{(p, a): a ~ Q, (q, a) = 1}. 

The unique point q, whose existence is guaranteed by Axiom 7, will 
in the sequel be denoted by Pa. The physical interpretation ofpa is as follows 
(cf., e.g., Guz, 1981b): po is the final pure state of a physical system to 
which the initial pure state p goes, after the "measurement" of the degree 
of membership (p, a) of p in a is performed. 

To give some examples of mathematical structures satisfying Axioms 
1-7, let us first consider any o- algebra ~ of subsets of  a set X having the 
property that all one-point subsets of X belong to ~.  Identifying P = X, 
Q = M, and putting by definition 

{10 i f p ~ a  
(p, a) = if Ca 

we arrive at a trivial example of a statistical tr algebra (P, Q, ( . , .  )). 
A more interesting example can be obtained when one identifies Q 

with the ortholattice L(H) of the closed subspaces of a complex Hilbert 
space H, P with the subset of L(H) consisting of the one-dimensional 
subspaces of H, and puts by definition 

( p, a)=tr(PpPa) 

where Pp, Pa denote the orthoprojectors onto p and a, respectively, and tr 
stands for the trace. In this case, the Axioms 1-7 can be interpreted in terms 
of pure states and propositions (yes-no measurements). The details of this 
approach can be found, for instance, in Guz (1981a, b). 

3. THE E M B E D D I N G  T H E O R E M  

Now, we shall show the most important consequences of  Axioms 1-6, 
culminating in proving an embedding theorem for Q. The set of objects. 
The consequences of Axiom 7 will be examined separately at the end of 
this section. 

Theorem I. The set Q of objects, endowed with the partial ordering 
-< and the correspondence a ~ a', is a o- orthoposet, i.e., an orthomodular 
orthocomplemented cr-orthocomplete partially ordered set with the least 
and the greatest elements, 0 and 1, respectively, in it. 

To prove the theorem above we shall adopt the techniques used in the 
so-called quantum logic approach to axiomatic quantum mechanics (cf.,eg., 
Mackey, 1963). The proof  will be preceded by two lemmas. 
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Lemma I. If a~ c Q, i = 1, 2 , . . . ,  are pairwise orthogonal, then ~i ai is 
the least upper  bound (1.u.b.) for the sequence {ai}, denoted subsequently 
by Viai. 

Proof (after Mackey, 1963). By definition, Yq a~---a~ for every i =  
1 , 2 , . . . .  Suppose now that b-> a~ for each i. Note that the latter can 
equivalently be expressed as b'La~ for all i, so that the Axiom 4, when 
applied to the sequence {b', a~, a2, . . .} (consisting, clearly, of  pairwise 
orthogonal elements), leads to the existence of the element b '+  al + az +" �9 �9 
in Q. In other words, for all p e P we have 

and hence 

or equivalently 

1 -> (p,  b ' +  al + a 2 + "  �9 ") 

= (p, b')+(p, a l )+  (p, a2)+" �9 �9 

b ' •  a t 
J 

~aj<_b"=b 
J 

The last inequality shows that ~j a t is indeed the l.u.b, for the orthogonal 
sequence {at} , as claimed. �9 

Lemma 2. Q is orthomodular,  that is, it has the following property: 

a<-b~3c~q,c• b = a v c  

Moreover, c is uniquely determined by a and B: c = b ^ a', the latter denoting 
the g.l.b. (greatest lower hound) for b and a'. 

Proof. Since a -< b, or equivalently a_l_b', we see that by Axiom 4 there 
exists a + b' in Q. 

Letting c = (a + b')', we immediately check out that for an aribtrary 
peP,  

(p, c ) =  1 - ( p ,  a+b')= 1 - ( p ,  a ) - ( p ,  b ' )=  (p, b) - (p ,  a) 

so that 

(p, b ) =  (p, a ) +  (p, c )=  (p, a + c) (*) 

where latter equality is a consequence of the fact that a• (see Axiom 4). 
Indeed, c• +b '>- a, and hence also c• The equality (*), valid for all 
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p ~ P, leads by Axiom 1 to b = a + c = a v c, where the last equality follows 
as a consequence  of  Lemma 1. 

Finally, by de Morgan ' s  laws 

c = ( a + b ' ) ' = ( a v b ' ) ' = a ' A b  

as claimed. The p roo f  o f  the lemma is thus complete.  �9 
We are now in a posi t ion to prove our  theorem. Clearly, for an arbitrary 

object a 6  Q we have a " =  a, and a -  < b implies b ' <  - a '  (a, b e  Q), which 
means that the cor respondence  a ~-~ a '  is an involution. We shall show that  
this involut ion is in fact an or thocomplementa t ion ,  i.e., that  b <- a and b -< a '  
leads necessarily to b -- 0. Indeed,  if b -< a and b <- a '  for some a, b ~ Q, then 

b -< g.l.b.{a, a'} = a ^ a ' =  (a '  v a ) '  = ( a ' +  a ) '  = 1' = 0 

so that b = 0, as required. 
Note  that  the existence o f  a ^ a '-= g.l.b.{a, a'} is a direct consequence  

o f  de Morgan ' s  law and the existence of  the 1.u.b.{a', a } ~  a ' v  a = a '+a,  
the latter being guaranteed by Axiom 4. 

The p r o o f  of  the theorem is therefore complete.  Before going further, 
we need some definition. 

An object  a ~ Q is called a support (or carrier) of  a point  p ~ P (cf. 
Zierler, 1961 ; Pool, 1968), if (i) p ~ a, i.e., (p, a) = 1 ; (ii) p ~ b, where b ~ Q, 
implies b -> a, i.e., a is the smallest object in Q containing p. 

Note  that  by (ii) the suppor t  o f  p, if it exists, is uniquely determined 
by the point  p. We shall denote it by Sp. 

Lemma 3. Every point  p c P has the support ,  and 

(q, sp) < 1 

for all points q # p, Moreover ,  the support  sp o f  p is an a tom in Q, i.e., 
a <~ sp, a ~ Q, implies either a = s or a = 0, and the cor respondence  p ~ s v, 
p ~ P, is a bijection o f  the set P o f  points onto the set A ( Q )  of  atmos in Q. 

Proof Let p ~ P. By Axiom 6, there exists an a c Q such that (p, a )  = 1 
and (q, a)  1 for all points q different f rom p. We shall show that a is the 
support  o f  p. 

Let b ~ Q, b ~ a. (Note  that such an element b always exists, since 
a # 0 ,  so one can take, for instance, b - -0 ) .  Since aZ_b' and a ~ 0 ,  there 
exists by Axiom 5 a point  r c P such that 

( r , a ) = l  and (r, b ' ) > 0  

the latter being equivalent to (r, b) < 1. However ,  by virtue o f  Axiom 6, the 
point  r must  be identical with p, r = p ,  and we therefore conclude that 
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(p, b) < 1. Thus,  we have shown that 

Vp~v: : la~o( (p ,  a ) = l  and VbeQ, B~a(p, b ) <  1) 

which means that the object a is the suppor t  o f  p, a = s o. 
At the same time we have proved (see above) that  (q, a) < 1 for every 

point  q ~ p. 
Now,  we shall show that sp is an a tom in Q. 
Suppose  that c-< So, c ~ 0. By Axiom 5', there exists a point  q c P with 

(q, c ) =  1, and hence also (q, Sp)= 1, so that  q = p  according to what  we 
have already proved. But (q, c) = 1 implies c >- Sq = Sp, and therefore c = sp, 
as claimed. 

To prove that p ~ Sp is one -one ,  assume that  sp = sq for some p, q E P. 
Then 

(q, sp) = (q, Sq) = 1 

and hence q = p. 
Finally, if e is an a tom in Q, then by Axiom 5' we have 

(p, e ) =  1 

for some p e P, and hence e - sp, so that e = Sp, as e is already an atom. This 
proves that  p ~-~ sp is "on to , "  and concludes the p roof  of  the lemma. �9 

L e m m a  4. Q is atomic, that is for every nonzero  element a �9 Q there 
exists an a tom e ~ Q such that e-< a. Moreover ,  Q is atomistic, i.e., every 
nonzero  element a ~ Q is the 1.u.b. of  the atoms contained in it. More  
precisely, 

a = V { s p :  p � 9  

Proo f  Let a be a nonzero  element o f  Q. By Axiom 5', there exists a 
point  p �9 P with (p, a)  = 1. Hence  a >- sp, where Sp is an a tom by Lemma 3, 
which concludes  the p r o o f  o f  the first ha l f  o f  the lemma. 

Obviously,  a >- Sp for  every p �9 P with (p, a)  = 1. Now,  assume that for 
some b �9 Q we also have b >- Sp for all p c P satisfying (p, a)  = 1, and prove 
that b - a. Since b >- Sp, we have (p,  b) >- (p,  Sp) = 1, so that (p, b) = 1. The 
latter equality, valid for all p �9 P with (p, a)  = 1, shows that we must  have 
a -< b indeed,  after we take into account  our  Axiom 5". 

To summarize  the results we have obtained so far as the consequences  
o f  Axioms 1-6, we state the following theorem. 

Theorem 2. Let (P, Q, ( . , .  )) be a statistical o- algebra. Then Q is an 
atomistic cr or thoposet ,  and there is a one- to-one mapping  p ~ sp o f  the set 
P o f  points onto the set A ( Q )  o f  atoms in Q such that sp <- a if and only 
if (p, a)  = 1. 
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Before going further,  we have to in t roduce some definitions. We shall 
say that  two points  p, q c P are orthogonal ( compare  Gudder ,  1970), and 
write p,l,q, i f  for  some object  a ~ Q we have (p, a)  = 1 and (q, a)  = 0. The 
above-def ined  or thogonal i ty  relation L is clearly symmetr ic .  Note ,  by the 
way, that  p4q if  and only if Sp4Sq. Indeed,  pLq implies  sp -< a and Sq <- a' 
for  some a e Q, and hence sp4Sq. Conversely ,  Sp• leads to 

l =(p, sp)<-(p,s'q) 

so that  (p, Sq) = 1 = (q, Sq), which shows that  p,l,q, as claimed. 
The set P o f  all points  endowed  with the or thogonal i ty  relat ion defined 

above will be called the generalized phase space. Thus,  the general ized phase  
space (P, 4 )  provides  an example  of  what  is called by mathemat ic ians  an 
orthogonality space (cf., e.g., Randal l  et al., 1972; Gerel te  et al., 1974, and 
references quoted  therein).  

Let now S be a subset  o f  P. Define S to be  the set of  all points  p E P 
such that  p•  (read: pLq for all q~  S), and write S -  instead of  S "• 
Clearly,  s__ S - ,  and when S = S - ,  we call the set S closed (or, to be more  
precise, • closed). It  is not  difficult to check out that  under  set inclusion 
the family of  all closed subsets of  P, denoted  subsequent ly  by C(P, 4) and 
called the phase geometry associated with (P, Q, (- ,. )) (Guz,  1975) becomes  
a comple te  o r t hocomplemen ted  lattice, whose  lattice opera t ions  (joins and  
meets,  respectively)  are given by 

V j  ~ = ( U j s j )  - , AjSj=O~sj 

where {Sj} denotes  an arbi trary family of  closed subsets o f  P, and  the 
o r thocomplemen ta t i on  is given by the cor respondence  S,--~ S • S ~ C( P, 4). 
For  the empty  set • we put,  by definition, Q~• P, so that  bo th  Q~ and P 
belong to C(P, ,4). 

Lemrna 5. Let S be  a nonempty  subset  o f  P. Then  

S -  = {p ~ P:  (p, a)  = 1 for  all a ~ Q such that  (q, a) = 1 for  every q ~ S} 

Proof Let p e P be such that  (p, a ) =  1 for  every a c Q satisfying 
(q, a)  = 1 for  all q ~ S. We shall show that  p c S - ,  i.e., that  p,l,S • To do 
this, two cases should be considered.  

(a) S • = Q. In this case, S -  = Q• = P, so nothing has to be proved.  
(b) S • ~ ~ .  Let r ~ S. Then Sr4Sq for  every q ~ S, so that  (q, s'r) = 1 for  

all q~  S. By the hypothesis ,  (p, s'r) = 1, so that  sp<-s'r or sp4sr, that  is, p •  
We thus have  shown that  p4r for  every r e  S • which means  that  p,l,S • or 
p e ( S l ) l = S  -. 

To prove  the oppos i te  inclusion, assume that  p ~ S- ,  i.e., p4S  • We 
shall show that  (p, a)  = 1 for  every a 6 Q satisfying (q, a)  = 1 for  all q e S. 
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Again,  two cases will be considered.  One can assume,  wi thout  any loss of  
generali ty,  that  a r 1. Then,  by L e m m a  5, 

a ' = V { s , :  reP,  ( r , a ' ) =  1} 

Since for  an arbi t rary  q e S, Sr<-a'<-s'q, or, equivalently,  r e  S • one 
must  in par t icular  have,  by the assumpt ion  p• so that  Sp• Hence  also 

sp• reP ,  (r ,a ')= l }=a '  

and therefore  (p, a)--- (p, sp) = 1, so that  (p, a)  = 1, as claimed.  The p r o o f  
of  the l e m m a  is therefore  complete .  �9 

The physical  in terpre ta t ion  of  the member s  of  the set difference S - \ S  
is, according  to Varadara jan  (1968), that  S - \ S  represent  the set o f  superposi- 
tions of  the pure  states f rom S, as these e lements  are precisely the " p u r e  
s ta tes"  which have all the proper t ies  possessed  by all the e lements  of  S 
s imul taneous ly  (for details, see Varadara jan ,  1968). 

We shall now prove  the fol lowing " e m b e d d i n g  theorem."  

Theorem 3. For  every a e Q, the set a ~ = {p e P:  (p, a)  = 1} belongs  to 
C(P, Z), and the co r respondence  a,--~a ~ defines an or thoinject ion of  the 
t r -or thoposet  Q into C(P, • 

where 

hence 

Proof Let us first observe  that  

a '  = ( a ~  • (**) 

a ~  P: (q, a)  =0}  

(a l )  - = (aO) •177177 = (a~ • = a 1 

which shows that  a ~ e C(P, J_). 
To prove  (**), one can assume with no loss of  general i ty  that  a ~ 0, 

since a = 0  implies  a ~  P, so that  (a~ • = P•  = Q =  a I, as required.  
Let p e a ~. Then  clearly, p_Lq for all q e a ~ that  is, p e (a~ l ,  which 

proves  that  a~_c (a~ • To prove  the oppos i te  inclusion,  assume that  p e 
(a~ • so that  sv_l_s q for  all q e a ~ Hence  sp3-a', since by  L e m m a  4, a ' =  V{sq: 
q e P, q e a~ Therefore ,  

(p,a)>-(p, Sp)= l 

so that  (p, a ) =  1, which shows that  p e a  ~, and the oppos i te  inclusion is 
also established.  

To p rove  the second ha l f  o f  the theorem,  observe  that  a---b,  where  
a, b e Q, implies  clearly a ~ c b ~, and that  the oppos i te  impl ica t ion  is guaran-  
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teed by Axiom 5". Obviously, 0 = L•, and 1 t=  P, so there remains to be 
shown that the correspondence a ~ a i preserves the orthocomplementat ion,  
i.e., 

a'l = (a 1 ) 

But a ~ = ,o a , and one therefore finds by using (**) that 

(a l )=(a '~  '1 

as required. The proof  Of the theorem is thus complete. �9 
We shall now come back to Axiom 7 and its consequences. The physical 

significance of this axiom has been clarified in a series of  papers (Bugajska 
and Bugajski, 1973a, b; Guz, 1980, 1981a, b), where several equivalent forms 
of this postulate were found and analysed in detail. In particular, the 
equivalence between Axiom 7 and the so-called covering law in Q has been 
established. (We recall that the covering law holds in Q, or that Q possesses 
the covering property, if for each a c Q and each atom e ~ A(Q) there exists 
a v e in Q, and a v e covers a, when e :~ a, i.e., a v e -> b -> a implies either 
b = a or b = a v e). The latter is in turn equivalent to the well-known 
Jauch-Piron condition in Q (see Jauch and Piron, 1969), Stating that for 
every pair a, e of  elements of Q, where e is an atom, the "difference" 
a v e - a ,  defined as (a v e )^  a' ,  is either an atom (when e ~ a) or zero 
(when e <- a). 

So, we finally arrive at the following result. 

Theorem 4. If  (P, Q, ( ., .  )) is a statistical o" algebra, then Q, the set of  
objects, endowed with the partial ordering -< and the orthocomplementa-  
tion', is an atomistic o- orthoposet satisfying the covering law. 

Moreover,  repeating the arguments used previously in the context of  
the quantum logic approach (Guz, 1978) one can establish the following fact. 

Theorem 5. For any statistical ~r algebra (P, Q, ( . , . ) ) ,  its associated phase 
geometry C(p, _L) is an atomistic, orthomodular,  or thocomplemented com- 
plete lattice with the covering law holding in it. 

4. S U P E R P O S I T I O N  PRINCIPLE 

A pair {p, q} consisting of two distinct points from P is said to be 
classical if {p, q} = {p, q}, that is, if there is no superposition of p and q. 
Otherwise, it is called nonclassical. 

Now, we have two extreme possibilities for statistical o- algebras: the 
quantum case, distinguished by the validity of the superposition principle 
(cf. Guz, 1974, 1975; Pulmannova,  1976) which says that any pair {p, q} is 
nonclassical, i.e., there exists a third point (pure state) in P, different from 
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both p and q, which is a superposition of p and q ; and the classical case, 
where there are no nonclassical pairs at all. The corresponding statistical 
cr algebras will be called q u a n t u m  and classical, respectively. 

It is not difficult to show that in the classical case the transition 
probability function (:) is trivial, that is, 

(P:q) = if p ~ q 

Indeed, suppose that (p, q) is a classical pair, i.e., {p, q}-={p,  q } , p  ~ q. 
Then, passing on to the supports sp, Sq of, respectively, p and q, we find by 
using the orthomodularity of Q 

spv  Sq = (sp v Sq - Sq) + Sq 

where spv sq - s o is again an atom by the Jauch-Picron condition. Thus, by 
Lemma 3, spv S q -  Sq = Sr for some r c P. Obviously r e {p, q}-. Indeed, 
assuming (p, a ) = ( q ,  a ) =  1 for some a~  Q, one immediately finds that 
s o v Sq <-a, and therefore also sr-< a, which means that (r, a ) =  1, the latter 
showing that r c {p, q}-, as claimed. But, by the assumption, r must equal 
either p or q. Since $r-[_Sq, w e  find r = p  and, clearly, p L q .  Hence, (p:q)  = 
(p, Sq)-< (p, s~)= 0, so that ( p : p ) =  0. Thus, in the classical case, we have 
( p : q )  =0  for all pairs (p, q) with p r  q (obviously, ( p : p ) =  1 for every 
p c P),  which proves our statement. 

Moreover, in the classical case one has p~ e a 1 if and only if (p, a) = 0, 
since p ~ a ~ implies now p • a l, and hence Sp • v {So: q c a 1}, the latter equality 
being valid by Lemma 4; hence (p, a) _< (p, Sp) = 0, so that (p, a) = 0. Thus, 
in the classical case the function (- ,- ) is of the form 

(p, a) ={10 i f p ~ a l  
i f  p ~ a  ~ 

so, we have now arrived at the trivial "degree of membership" function 
discussed previously in Section 2. 

We thus have shown that for any classical statistical o- algebra (P, Q, 
( . , . ) ) ,  in which all two-point subsets {p, q} ___ P are classical pairs, the set 
Q of objects can be identified (by Theorem 3) with acr  algebra of subsets 
of P, and the function (. ,. ) is degenerated in the sense that (p, �9 ) is the 6 
measure on Q concentrated at the point p. 

In the quantum case, the validity of the superposition principle leads 
to the irreducibility of the phase geometry C(P,•  (Guz, 1978), which 
together with Theorem 5 enables us to apply in this case the so-called 
"fundamental  theorem of projective geometry" (cf., e.g., Varadarajan, 1968; 
Maeda, 1970), provided we add to Axioms 1-7 the requirement that the 
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projective dimension of C(P, L) is greater than 3 (which simply means that 
there are at least four orthogonal points in P). Then, by the above-mentioned 
theorem, there exists an inner product vector space (V,, ( . ,  .)) over an 
involutive division ring D such that C(P, L) is orthoisomorphic to the 
lattice of_l_-closed subspaces of  the vector space V. (We recall that a subspace 
M of V is said to be _l_-closed if M = M • where M • = {x ~ V: (x, y) = 0} 
for all y ~ M).  Clearly, the representation theorem above applies also to Q, 
as the latter was identified by Theorem 3 as a sub-cr-orthoposet of C(P, L). 

Summarizing the results obtained so far, we arrive at the following 
representation theorem. 

Theorem 6. For any classical statistical or algebra (P, Q, ( . ,  �9 )), the set 
Q of objects can be identified with some ~r algebra of subsets of the set P, 
and the function ( . ,  �9 ) becomes then trivial, i.e., for every p, (p, .) is the 
measure concentrated at p. If (P, Q, ( . ,  �9 )) is a quantum statistical tr algebra 
such that there exist at least four orthogonal points in P, then there is as 
inner product  vector space (V, ( . , . ) )  over an involutive division ring D 
such that Q can be identified with a o- orthoposet consisting of  L-closed 
subspaces of  the vector space V. 
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